Multiple Inputs Single Output Optimization
In the following we will demonstrate a multi-input single-output optimisation of the Hartmann6 function, which is a 6-dimensional function with 1 global minimum of f(x) = -3.32 at x = (0.202, 0.150, 0.477, 0.275, 0.312, 0.657).
The code repeats the optimisation three times and calculates the averages and standard deviations for the best value at each step
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
|
The final results will look similar to the below
iteration average_y std_dev min_y max_y
0 1 1.586762 0.751536 0.928896 2.405812
1 2 1.919769 0.621179 1.474741 2.629444
2 3 2.075202 0.612735 1.655122 2.778288
3 4 2.148868 0.546707 1.792197 2.778288
4 5 2.317580 0.470392 1.876119 2.812358
5 6 2.538105 0.335098 2.164590 2.812358
6 7 2.731283 0.261033 2.462628 2.983960
7 8 2.806066 0.156982 2.686976 2.983960
8 9 2.890985 0.185828 2.686976 3.050586
9 10 2.905339 0.204995 2.686976 3.093648
10 11 2.944499 0.253593 2.695581 3.202522
11 12 3.049329 0.222026 2.832777 3.276452
12 13 3.049329 0.222026 2.832777 3.276452
13 14 3.091559 0.200874 2.919533 3.312315
14 15 3.100904 0.193038 2.934023 3.312315
15 16 3.102362 0.192549 2.934023 3.312315
16 17 3.105441 0.192583 2.937678 3.315735
17 18 3.111389 0.184954 2.955457 3.315735
18 19 3.115784 0.180052 2.966477 3.315735
19 20 3.116531 0.179126 2.968718 3.315735
20 21 3.117735 0.180822 2.968718 3.318900
21 22 3.120218 0.178086 2.975520 3.319104
22 23 3.122956 0.174877 2.983333 3.319104
23 24 3.126223 0.171012 2.993136 3.319104
24 25 3.131209 0.165489 3.007126 3.319104
25 26 3.138320 0.157770 3.028456 3.319104
26 27 3.150026 0.148558 3.060911 3.321522
27 28 3.161260 0.139437 3.068032 3.321558
28 29 3.171317 0.133127 3.068032 3.321559
29 30 3.179919 0.129108 3.068819 3.321559
30 31 3.182996 0.128312 3.069028 3.321971
31 32 3.190621 0.126485 3.069639 3.321971
32 33 3.192119 0.126328 3.069639 3.321971
33 34 3.193183 0.125814 3.070570 3.321971
34 35 3.193474 0.125389 3.071444 3.321971
35 36 3.195680 0.124851 3.072320 3.321971
36 37 3.196033 0.124328 3.073381 3.321971
37 38 3.196417 0.123760 3.074532 3.321971
38 39 3.196816 0.123172 3.075727 3.321971
39 40 3.197420 0.122282 3.077541 3.321971
40 41 3.198076 0.121319 3.079507 3.321971
41 42 3.199214 0.120168 3.081813 3.321971
42 43 3.199971 0.119061 3.084084 3.321971
43 44 3.200544 0.118226 3.085803 3.321971
44 45 3.200600 0.118145 3.085970 3.321971
45 46 3.200626 0.118107 3.086048 3.321971
46 47 3.200929 0.117666 3.086957 3.321971
47 48 3.200929 0.117666 3.086957 3.321971
48 49 3.202110 0.115955 3.090501 3.321971
49 50 3.202916 0.114795 3.092917 3.321971